ExB Themis: Extensive Feature Extraction from Word Alignments for Semantic Textual Similarity

نویسندگان

  • Christian Hänig
  • Robert Remus
  • Xose de la Puente
چکیده

We present ExB Themis – a word alignmentbased semantic textual similarity system developed for SemEval-2015 Task 2: Semantic Textual Similarity. It combines both string and semantic similarity measures as well as alignment features using Support Vector Regression. It occupies the first three places on Spanish data and additionally places second on English data. ExB Themis proved to be the best multilingual system among all participants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why and How to Pay Different Attention to Phrase Alignments of Different Intensities

This work studies comparatively two typical sentence pair classification tasks: textual entailment (TE) and answer selection (AS), observing that phrase alignments of different intensities contribute differently in these tasks. We address the problems of identifying phrase alignments of flexible granularity and pooling alignments of different intensities for these tasks. Examples for flexible g...

متن کامل

Predicting Correlations Between Lexical Alignments and Semantic Inferences

While there is a strong intuition that word alignments (e.g. synonymy, hyperonymy) play a relevant role in recognizing textto-text semantic inferences (e.g. textual entailment, semantic similarity), this intuition is often not reflected in the system performances and there is a general need of a deeper comprehension of the role of lexical resources. This paper provides an empirical analysis of ...

متن کامل

DLS$@$CU: Sentence Similarity from Word Alignment and Semantic Vector Composition

We describe a set of top-performing systems at the SemEval 2015 English Semantic Textual Similarity (STS) task. Given two English sentences, each system outputs the degree of their semantic similarity. Our unsupervised system, which is based on word alignments across the two input sentences, ranked 5th among 73 submitted system runs with a mean correlation of 79.19% with human annotations. We a...

متن کامل

CFILT-CORE: Semantic Textual Similarity using Universal Networking Language

This paper describes the system that was submitted in the *SEM 2013 Semantic Textual Similarity shared task. The task aims to find the similarity score between a pair of sentences. We describe a Universal Networking Language (UNL) based semantic extraction system for measuring the semantic similarity. Our approach combines syntactic and word level similarity measures along with the UNL based se...

متن کامل

Bilingual Word Embeddings for Phrase-Based Machine Translation

We introduce bilingual word embeddings: semantic embeddings associated across two languages in the context of neural language models. We propose a method to learn bilingual embeddings from a large unlabeled corpus, while utilizing MT word alignments to constrain translational equivalence. The new embeddings significantly out-perform baselines in word semantic similarity. A single semantic simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015